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Abstract

The Brown Treesnake (Boiga irregularis), a rear-fanged member of the polyphyletic family Colubridae, is an introduced
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or early 1950s and has since been implicated in the decline and

extirpation of indigenous bird, bat and lizard populations on

the island (Savidge, 1987, 1991; Wiles, 1987; Fritts, 1988;

Chiszar et al., 1988; Greene, 1989). Population densities of B.

irregularis on Guam are very high and may have reached 50–

100 snakes per hectare in some forest habitats, with suspected

total numbers exceeding one million (Fritts, 1988; Rodda

et al., 1999; Rodda, pers. comm.). Brown Treesnakes have a

high potential to become established on other Pacific islands

and they may already be established on Saipan; eight snakes

have also been found on Hawaii (BTS Control Committee,

1996; Kraus and Cravalho, 2001). The diet of B. irregularis

consists primarily of lizards, birds, mammals and bird eggs

(Fritts, 1988; Greene, 1989). However, Savidge (1988) noted

that juvenile and smaller Brown Treesnakes preyed almost



and large adults (SVLO1500 mm). Venoms from adult B.

dendrophila (Sulawesi) and B. cyanea (locality unknown)

were obtained using the same method.
2.3. Protein concentration determination

Protein concentration was assayed in triplicate according

to Bradford (1976) as modified by BioRad Inc., using bovine

gamma globulin as a standard. Enzyme specific activities

and all other analyses were based on these protein

concentrations.
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2.4. Enzyme assays

Endoprotease activity was determined with azocasein

(Aird and da Silva, 1991), and activity was expressed as

DA342/min per mg venom protein. Activity towards

4-nitroaniline-derived (pNA) synthetic substrates for throm-

bin (BzPheValArg-pNA), kallikrein (BzProPheArg-pNA),

plasmin (D-ValLeuLys-pNA), trypsin (N-a-Bz-DL-Arg-

pNA), elastase (SuccAlaAlaAla-pNA), collagenase

(CbzGlyProLeuGlyPro-pNA), leucine aminopeptidase

(L-Leu-pNA), dipeptidyl aminopeptidase (GlySl5t9.9(y5-
 )-o14.2(p)0(2 -1.2203 TD
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100 mM NaCl and 5.0 mM CaCl2 (pH 6.8). Two hundred

microliters (250 mg) of each venom was injected onto a

TosoHaas TSK G2000 SWXL size exclusion column (10!
300 mm) at a flow rate of 0.3 ml/min using the same buffer

(Waters HPLC), and chromatograms were recorded using

Empower software.

2.9. MALDI-TOF mass spectrometry

Approximately 0.5 mg crude B. irregularis venom

(neonate and adult-Guam; adult-Indonesia) was spotted

onto 0.5 ml sinapinic acid matrix and the samples were

subjected to matrix-assisted laser-desorption ionization

time-of-flight mass spectrometry (MALDI-TOF-MS) anal-

ysis using an ABI Voyager DE-Pro mass spectrometer

in linear mode. Samples were analyzed using a window of

5–15 kDa.

2.10. Toxicity assays

Lethal toxicity of crude venom was evaluated using

house geckos (Hemidactylus frenatus) obtained from

Bushmaster Reptiles (Longmont, CO, USA), curious

skinks (Carlia ailanpalai) collected on Guam, chicks

(Gallus domesticus) obtained from a local breeder and

NSA mice (Mus musculus) bred in the UNC Animal

Facility. All doses were delivered intraperitoneally in

sterile saline, and doses were adjusted to individual



3.2. Enzyme assays

Enzyme assays revealed only azocaseinolytic (metallo-

protease) and acetylcholinesterase enzyme activities. For

metalloprotease activity (Fig. 2), there was a trend toward

increasing activity with increasing snake SVL (Fig. 2; r2Z
0.56), and a significant difference between venoms from

neonate/juvenile and adult snakes was observed (p!0.05).

Acetylcholinesterase activity followed the same trend, with

venom from larger snakes showing approximately 2!
higher activity (Fig. 3). Highest levels were approximately

1/4 that observed with the positive control (N. melanoleuca

venom). For all size classes, no activity toward synthetic

substrates for thrombin, kallikrein, trypsin, elastase,

collagenase, leucine aminopeptidase, dipeptidyl aminopep-

tidase, PLA2, phosphodiesterase or L-amino acid oxidase

was detected.

3.3. 1D gel electrophoresis

Non-reducing SDS-PAGE of crude venoms revealed

an average of 12 major and 6 minor bands, with

molecular masses ranging from w7–200 kDa (Fig. 4A

and B). No major differences were seen between the

venoms from neonate, juvenile and adult snakes, but

bands at 50–60 kDa were less intense in venoms from

neonates, and low molecular mass bands (8–10 kDa)

were somewhat less intense in venoms from large adults
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(Fig. 4B). Several differences from B. dendrophila and

B. cyanea were apparent: molecular masses of bands in

the 50–53 and 17–20 kDa ranges were slightly higher

for both of these species relative to B. irregularis, as

was a band in the 25–28 kDa range for B. dendrophila

(Fig. 4A). No protease activity was observed on

zymogram gels (data not shown) for any of these

Boiga venoms.

3.4. Western blot analysis

Probes of blotted venoms with anti-tigrin serum

identified a single band in venoms from both neonate and

adult B. irregularis (Fig. 5), indicating the presence of a

CRiSP homolog (Yamazaki and Morita, 2004). The

approximate molecular mass of this protein was 25 kDa.

3.5. 2D gel electrophoresis

Approximately 40–45 protein spots were visualized

following staining of 2D gels with Coomassie Brilliant

Blue (Fig. 6A and B). The main differences between venoms

from neonates and adults were seen in the higher molecular

mass acidic region of the gels. Spots were more intense in

the adult venom sample, and based on preliminary size

exclusion HPLC experiments (see Section 3.7), they

corresponded to acetylcholinesterases (approximately

reduced molecular mass of 56 kDa) and metalloproteases

(approximately reduced molecular mass of 49 kDa).

Venoms from both neonates and adults showed numerous

intense spots in the lower molecular mass region (8–

14 kDa), with multiple w8 kDa species which ranged from

moderately acidic to highly basic.

3.6. MALDI-TOF mass spectrometry

Mass spectrometry confirmed the presence of numerous

peptides in the 8–10 kDa range (Fig. 7). Peptides between

samples were considered homologous if the mass differed

by less than 0.3%. Comparison of venom samples from

neonate and adult snakes from Guam and an adult snake

from Indonesia, using an analysis window of 5–15 kDa,

indicated at least 23 total peptides in this mass range, at least

6 of which appeared to be present in the Indonesian snake

venom only (Table 2). A greater number of peptides (16)
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were observed in the Indonesian sample, including two of

approximate masses of 6.6 and 6.8 kDa, and only five

peptides were present in all three samples. Some differences

in peptide distribution in venoms from neonate and adult

snakes were also apparent, with a total of 13 peptides in

neonate venom and 9 in adult venom. A prominent peak at

25.4 kDa was also observed in all venoms (data not shown),

likely corresponding to the CRiSP band observed following

Western blot analysis.

3.7. Size exclusion HPLC

Size exclusion chromatography resolved 8–10 protein

peaks, and detected enzyme activity (acetylcholinesterase,
metalloprotease) was limited to peak I (Fig. 8). Based on 1D

SDS-PAGE, a 25 kDa CRiSP homolog and a 17 kDa protein

were present in all chromatograms, and numerous 8–10 kDa

proteins were present in peaks eluting between 35 and

52 min. Chromatograms from the three age classes were

similar, but greater variation was seen in low molecular

mass peaks in venom from neonates (Fig. 8C).

3.8. Lethal toxicity

In contrast to effects on inbred mice, crude venom was

quite toxic to lizards and birds (Table 3). Chicks were most

sensitive to venom, followed by Hemidactylus geckos and

then Carlia skinks. It should be noted that on Guam, all of



these species are typical prey species, but only the



Acetylcholinesterase enzymes from Naja and Bungarus

typically are homodimers of 65–70 kDa subunits, while

acetylcholinesterase monomer from the shore pit viper

(Trimeresurus purpureomaculatus) was 58.6 kDa (Tan and

Tan, 1987); purified AChE may show several isoforms

(Raba et al., 1979; Grossman et al., 1979). In B. irregularis,

partially purified acetylcholinesterase (data not shown) has a

monomer mass of w65 kDa and also appears to have

several isoforms. We are currently characterizing this

enzyme from B. irregularis venom.

2D electrophoresis revealed greater complexity in the

venoms of B. irregularis than was previously observed, and

a comparison of neonate and adult venoms revealed both

qualitative and quantitative differences. At present, most

components are not identified, but increased intensity of

spots in the acidic 49–66 kDa range are consistent with

higher levels of acetylcholinesterase and metalloprotease

activities in adult venoms. Western blot analysis using

polyclonal antibodies to the colubrid venom CRiSP tigrin

demonstrated that a homolog was present in B. irregularis

venoms. This class of proteins appears to be very broadly

distributed among reptile venoms (Yamazaki and Morita,

2004), suggesting that they are functionally important

components, but most venom CRiSPs have unknown

activities. It is clear from this and other studies (e.g.,

Yamazaki et al., 2002; Huang and Mackessy, 2004; Fry

et al., 2003; Lumsden et al., 2004a,b, 2005) that many (if not

most) ‘colubrids’ possess venom protein components

homologous with those in the venoms of front-fanged

snakes.

Based on SDS-PAGE and MALDI-TOF-MS, there is an

abundance of peptides in the 8–11 kD range in the venoms

of B. irregularis. Venoms from other members of the genus

Boiga have been shown to contain components with

a-neurotoxin-like activity (Broaders and Ryan, 1997;

Lumsden et al., 2004a,b, 2005), and several colubrid

‘three-finger’ neurotoxins have been isolated recently (Fry

et al., 2003; Lumsden et al., 2005). These toxins have

molecular masses of 8498 Da (colubritoxin; Fry et al., 2003)

and 8769 Da (boigatoxin-A; Lumsden et al., 2005),

generally larger than the well-characterized a-neurotoxins

(such as a-bungarotoxin) from elapid snakes. B. irregularis

venoms also contained four peptides with masses of 8.4–

8.7 kDa (see Table 2). Because both human envenomation

symptoms and animal toxicity data indicate neurotoxicity,

we believe that these B. irregularis venom peptides are

likely neurotoxin homologs of colubritoxin and boigatoxin-

A. We are currently purifying and characterizing

B. irregularis components in order to identify the precise

nature of these abundant low molecular mass compounds.

Ontogenetic differences in venom composition are

present in B. irregularis, and like some crotaline snakes

(e.g. Mackessy, 1988), venoms from neonate snakes are

more toxic to lizards and inbred mice than adult venoms.

Higher toxicity of neonate venom is consistent with the

presence of a greater diversity of 8.5–11 kDa proteins
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Fig. 8. Size exclusion HPLC separation of crudeB. irregularisvenom. Samples of 250mg of each venom were fractionated, and components of



trajectory in the evolution of venom systems, and there is

a vast pharmacological potential in these venoms.
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