

M. M , , 1 🏞 P. M /*

A a

1994; , 1996; 1 , 1998; B , , , 1998), *L* 1 1 M M . (1998). 🔺 4.1 1 5 1, 1 C. . M. 1 1 124 1 1 1 -11 1

(R , 1991; F , 1992; F , 1992; F , 1993; , 1976). (F , 1992; F , 1992; F , 1992; O , 1998) , 1992; F , 1992; O , 1998) , 1992; F , 1991; F , 1992; O , 1993; H , 1998) , 1992; F , 1993; H , 1993; H , 1998) , 1993; H , 1998) , 1994; F , 1994; F , 1995; F , 199 1993; H 1 1, 1998). C 1 1 $1 , \Rightarrow \Rightarrow A_2 (PLA_2) \Rightarrow \Rightarrow 1$ (PDE) C 1 1 (C $^{+2}$, M₄ $^{+2}$, $^{+2}$) A (C $^{+2}$, M₄ $^{+2}$, $^{+2}$) 1992; O **1**, 1998). F **1**. (1992) *11* **1 1** 1.195 · 사, · · · 사, 사, 1 , · · 1 · 사, . . . 1 (C. P), . **1** 1 **1** - 11. , 1993), K , **"**•, , F , 1994; P 1 1 ., 1997; G -R 1 ., 1998; H 1 1, 1998). G 1. (1993) 11 1 1 1 1

2. Ma a a

2.1. Rs a s

2.2. V. x.B ac

• 1, *i* E • P 1 , ••1, **1 1 1 1** (ACN) μ 25% B 15 ; **1** A = 0.1% **1** 1 (20 1 (FA) B = 80% ACN 0.1% FA; 30 , **)** 11). F 1 . 1 በላኤ - ፖራ ላኤ ሲ 1 1, (50 μL j l - EQ, • EN, ١ĥ **,**), 0.2 M . . . 4 **1**,<u>1</u>, 1, (..., K M K , 2004). **I**, 2001; L 4. 1 1 1 1 1 R 1 • EQ, - EN , i ź i złas – 1 I. 1 1 % .) 1 - EN - EQ, *****1. 1 ት. ነት. 1 ń 11. F 1 ń 1 1 M. 1. 1. - EN, 🏊 5 μL H₂O, 0.2 M - EQ, , j 🕯 4. . 🕄 1. Ч., M, С. . 1 1 M Μ **t** (F **t** C **,** , CO). R , C 1 1 D' ••i' 0.2% 1 **,1**, / 1 1 1

50/50 1 1 / 1 1 -- 1 1 1 0.5 1/, 1 - MALDI M - 1 - (K 1, MALDI I - 1).

2.4. I b C P V a c ... c all c c b ... c all c c ... a EQW

1.1 C.P (1 aM sa.) С s a C. P C aMI C & MAN 1 53 D, 11 250 ↓ H 8.25 (M , 1996). M ↓ -<u>A</u>, **1** (10 μ*x*; **. .** 190**.**) 1 • ▲ • (ED A, EG A, 1,10♣ ↑ 1 EQ, 30 1 1 . 1 . ↑ • • • • • 1, 1, (M , 1996).

2.5. Sab Ma c , e all eas

1,1, 1, 1, 1, 1, 1, 96 - 1, 1, 1, 96 - 1, 1, 1, 37 °C ↑ 1, 1, 1, 5.0 M

3. R

 $F_{\lambda}t$. 1. RP-HPLC h_{λ} 1 t (A)

 $F_{1}t.2. \text{ RP-HPLC} \qquad (50 \ \mu\text{L}) \ (50 \ \mu\text{L$

RP-HPLC (F₁. 1C). M 1 1 J С. M 1 - -1 á (• ËN, 1,1 1 -1 : $M + H^+ = 430.17,$ = 430.2; - EQ =444.17,=444.1). С 4., 4. 1 1 1 1 - 1 **-**16. 14. 4.), • EN, ń - EQ 11 1 1 10 1 10 (F. 1. 2). 1, z 1 - EQ, - EN, 1 . . (F.1.2; 1); С. С M, - EN Ċ. С c M. 1 2003). M 1 (M ... /A280 С. С M 1 ۱.á √ √n

1

	% • EN ₁	μM • EN	% • EQ,	μM • EQ,	, ,∎, ,
					₫ • ()
C aMa a x.B	69.3	704	30.7	293	(+)
С. а-	81.3	511	18.7	110	(+)
ca a					
С. с с Мин. 2, -	71.3	914	28.7	345	_
C. M _▼	75.6	665	24.4	201	_
M					
C. be be	81.4	790	18.6	169	_
С., с М	100	635	0	0	(+)
1. A					
С. са	70.4	228	29.6	90	(+)
c.cM					
С. са с-	62.1	507	37.9	291	-
a					
С.	70.3	1741	29.7	691	+
S cas-	55.5	452	44.5	340	_
a sa					

; • EQ - EN 1 I 1 , • / , . . 1 1 -1 15 % 11 . ; µM +2); 1 ; (+),1

(.c. Bj F , 1994), C. b. (M , 1985

- $B_{1}, G_{2}, I = 14, B_{2}, G_{2}, G_{2},$

- $R \qquad , \ A., \ P \ , \ J. \ , \ A. \ , \ J. D., \ B_J \qquad , \ J. B., \ F \ , \ J. \ , \ ,$

- , K.F., 1998. R , , , , • , , G. . (E .), E · F

333 337.

- Δ, Δ, Β, Β, Ι., G , -R Δ, F. ., D , R., B , C., NJ Z, F.G., F, J., B, , , MZ, E.F., 1994.